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E�cient Algorithms for Function Approximation
with Piecewise Linear Sigmoidal Networks
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Abstract�This paper presents a computationally e�cient
algorithm for function approximation with piecewise linear
sigmoidal nodes� A one hidden layer network is constructed
one node at a time using the well�known method of �tting
the residual� The task of �tting an individual node is accom�
plished using a new algorithm that searches for the best �t
by solving a sequence of Quadratic Programming problems�
This approach o�ers signi�cant advantages over derivative�
based search algorithms �e�g� backpropagation and its ex�
tensions	� Unique characteristics of this algorithm include

�nite step convergence� a simple stopping criterion� solu�
tions that are independent of initial conditions� good scaling
properties and a robust numerical implementation� Empir�
ical results are included to illustrate these characteristics�

Keywords� function approximation� nonlinear regression�
constructive learning� piecewise linear sigmoids� multilayer
perceptrons

I� Introduction

Multilayer perceptrons �MLPs� have become a popular
tool for approximating nonlinear functions in higher di�
mensions� Although they are not the panacea for these
types of problems� they are clearly recognized as a useful
member of the �toolbox of methods� that one might em�
ploy� Other methods include interaction splines �	
� ��
� ��
�
additive models �
� projection pursuit ��
� ��
� MARS ��
�
the � method ��
� hinging hyperplanes ��
 and CART �	�
�
None of these are likely to perform consistently better than
the others across a wide range of problems� At the same
time however� it is nontrivial to develop a method that is
truly e�ective in higher dimensions� and MLPs have found
a useful niche in this arena� Both theoretical and practical
reasons for this will be explored in subsequent sections of
this paper�
Historically� MLPs have been plagued by slow learning�

The desire to overcome this sluggishness has resulted in
considerable work on the development of faster learning
algorithms for MLPs� Backpropagation is a �rst�order
local descent technique� closely resembling the stochastic
gradient method� A majority of the work on faster algo�
rithms has been concentrated on the development of more
advanced �rst and second�order local descent methods �see
�		
 for an overview�� These methods use �rst and�or sec�
ond derivatives to determine directions of search that de�
scend the criterion function as quickly as possible� All of
these derivative�based descent methods possess the follow�
ing characteristics� First their convergence is asymptotic�
which means that it is not possible to bound the number of
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steps in the algorithm� It also makes it di�cult to choose
a suitable stopping criterion �i�e� one that is problem inde�
pendent� �	�
� �	�
� Second� these methods typically come
with several user speci�ed parameters that must be �tuned
to the problem� if learning is to proceed at a reasonable
rate �e�g� learning rates� momentum parameter� batch size�
etc���� Finally� the solutions obtained with these methods
depend on the initial conditions �because of local minima��
Thus� to improve the likelihood of �nding a good solution
we must train the network from several di�erent starting
points�

The learning algorithm developed in this paper is quite
di�erent from the traditional family of derivative�based
descent methods� First� a constructive approach is used�
which builds the network one node at a time� The ad�
vantages of a constructive approach include computational
e�ciency and the ease of determining a suitable network
size� In fact� there is theoretical evidence to suggest that
the learning problem may be intrinsically easier if we are
allowed to add nodes and weights during the learning pro�
cess �	
� Although constructive approaches are not guar�
anteed to produce networks of absolute minimal size� there
is good reason to believe that they can produce representa�
tions which are e�cient �	�
� Constructive algorithms have
been the mainstay in the statistical community for many
years� and in recent years many of these methods have been
integrated into the neural network community �	�
� ��
� ��
�
�	�
� �	�
� ��
� �	�
� ���
� ��	
� ���
� ���
� ��
� ���
�

Second� we use piecewise linear sigmoidal nodes instead
of continuously di�erentiable logistic nodes� This changes
the nature of the learning problem entirely� It becomes
a combinatorial problem in the sense that the number of
feasible solutions that we must search through to �nd a so�
lution is �nite� This makes it possible to develop learning
algorithms that converge in a �nite number of steps� In
fact we derive polynomial bounds on the number of steps
required for the algorithms that we develop� These algo�
rithms also turn out to be quite easy to use� They have
a simple �automatic� stopping criterion� and very few user
speci�ed parameters� In addition� they can be made to
produce good solutions that are independent of initial con�
ditions�

The remainder of this paper is organized as follows� The
material in section II provides an introduction to the par�
ticular constructive approach used in this paper� Sections
III and IV develop new learning algorithms for piecewise
linear sigmoidal nodes� which constitute the primary con�
tribution of this paper� Finally� empirical results are pro�
vided in section V to highlight some of the salient features
of these new algorithms�
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II� Function Approximation with Sigmoidal Basis

Functions

The following notation is used in the development in this
section� The symbol �x is used to represent input vectors
x that have been augmented with a 	 in the �rst position�
that is

�x �

�
	
x

�
�	�

Similarly� �w is used to represent weight vectors wd that
have been augmented with a �bias� weight in the �rst po�
sition

�w �

�
w�
wd

�
���

The dimension of these augmented vectors is d� 	�
The class of function approximation problems addressed

in this paper can be described as follows� The function
f � x � y de�nes a continuous nonlinear mapping from
x � �d to y � � whose concise mathematical description
is assumed unknown� Speci�c information about f is pro�
vided by way of a sample set S � f�xi� yi�g

N
i��� which con�

tains samples of f at a �nite number of points in �d� Using
these samples �and our knowledge of f �s general properties�

e�g� continuity�� our goal is to produce an estimate� �f � that
approximates f as closely as possible�
The class of approximating functions considered here are

one hidden layer neural networks of the form

�fn�x� � b� �

nX
i��

bigi�x� ���

where the gi�x� are sigmoidal functions� We work with
di�erent forms of the sigmoid in this paper� all of which
are parameterized by a weight vector wi� This is made
explicit with the notation gi�x� � ��x�wi�� The two most
common realizations are the logistic function�

�l�x� �w� � �	 � e� 	w
T 	x��� ��

parameterized by the weight vector w � �w and the ramp
function�

�r�x�w� �

��
�
� w

T
d x � �

�wT
d x� ����� � �� � � w

T
d x � �

	 w
T
d x � �

���

parameterized by wT � ��� ��wT
d 
� The ramp function can

be interpreted as a piecewise linear approximation to the
logistic function�
The models in ���� with sigmoidal basis functions� have

been shown to be universal approximators over a compact
subset S of �d for the class of continuous functions f from
S to � ���
� ���
� These models have the familiar �lin�
ear combination of basis functions� form� It is well�known
that when the basis functions are �xed� this form su�ers
from the curse of dimensionality� For example a typical
bound on approximation error for �xed basis functions is
O�	�n��d� ���
� ���
� indicating that it may require a num�
ber of basis functions that is exponential in d to achieve a

Initialization

f��x�  	

for n  � to nmax do
�� Compute Residual� en�x�  f�x� � fn���x�
�� Fit Residual� gn�x�  argming�G ken�x� � g�x�k
�� Update Estimate� fn�x�  �fn���x� � �gn�x�
where � and � are chosen to minimize kf�x� � fn�x�k

endloop

Fig� �� Iterative Approximation Algorithm �IIA��

signi�cant reduction in error� When the basis functions are
�tunable�� however� it is possible �in principle� to circum�
vent the curse of dimensionality �or at least this aspect
of it�� For example� with a sigmoidal basis it has been
shown that under very general conditions� the approxima�
tion error is bounded by O�	�n� ���
� The missing 	�d
in the power of the denominator is a strong motivation for
the use of these basis functions in higher dimensional prob�
lems� In addition� Jones has shown that this O�	�n� bound
can be achieved constructively �	�
� This result is also pre�
sented in ���
� ���
� where it receives a slightly di�erent
treatment� The proof of this result is itself constructive�
and thus provides a framework for the development of an
algorithm which can �in principle� achieve this bound�
One manifestation of this algorithm is shown in Figure

	� It starts by �tting the �rst basis to the original function
�the �rst time through the loop e� � f and f� � g��� The
second basis is then �t to the residual from the �rst ap�
proximation� and the two are combined �in Step �� to form
the second approximation� This process of �tting a basis
to the current residual and then combining it with the pre�
vious approximation continues until a suitable size model
is found� This is called the iterative approximation algo�

rithm because it builds the approximation by iterating on
the residual �i�e� the unexplained portion of the function�
at each step�
This algorithm is attractive in that the main loop con�

tains only three steps� two of which are quite simple� The
middle step however� can be quite di�cult� This step re�
quires that we �nd the function gn that best �ts the current
residual� This problem generally does not have a closed
form solution� and even algorithmic solutions are not guar�
anteed to produce the optimal gn in an e�cient manner� In
this paper we develop algorithms for performing this step
that produce �good approximations� �i�e� near optimal� in
a computationally e�cient manner�
Note that when sigmoidal functions are used in Step �

of the IIA algorithm� they must be scaled and shifted so
that they can better �t functions with arbitrary range and
position� That is� the sigmoidal basis used in Step � of the
IIA takes on the form

g�x� � a� � a���x�w� ���

where a� and a� are scaling and shifting parameters� The
�nal model produced by the IIA algorithm can still be ex�
pressed in the form of equation ���� where the the bi co�
e�cients are simple deterministic functions of ���� a� and
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for i  � to n do
�� Compute fn��� fn���x� 

Pn

j ��i
ajgj�x�

�� Compute Residual� en���x�  f�x� � fn���x�
�� Fit Residual� gi�x�  argming�G ken���x�� g�x�k

�� Update Estimate� fn�x� 
Pn

j��
ajgj�x�

where faig are chosen to minimize kf�x� � fn�x�k
endloop

Fig� �� Re�tting Algorithm�

a��

In practice it is common to use a re�tting procedure to
��ne tune� the result of IIA� This procedure can compen�
sate somewhat for the suboptimal result that may be pro�
duced at Step �� and also to some degree for limitations
due to the constructive nature of IIA� A typical re�tting
procedure is shown in Figure �� The basic idea is to re�t
each basis function� one at a time� to the residual formed
from the approximation using the other n � 	 basis func�
tions� This algorithm has the same attributes as the IIA�
it optimizes individual basis functions by �tting them to
a residual� and then reintegrates them into the overall �t�
It di�ers from the IIA in that the residual is computed
di�erently� and that the starting point for each re�tting is
usually close to its �nal point� This means that the search
in Step � is generally very fast compared to its counterpart
in Step � of the IIA� Because of this� re�tting usually runs
much faster than IIA�

III� Learning with Ramps and Hinging Sigmoids

This section develops learning algorithms for piecewise
linear sigmoidal nodes� These algorithms can be used to
optimize the basis in Step � of the IIA �and Step � of
the re�tting algorithm�� We begin by de�ning a revised
version of the ramp function called the hinging sigmoid

�HS� function on which our algorithms are based� A HS
node performs the function

�h�x�w� �

��
�

w�� �wT
l �x � w�

�wT
l �x� w� � �wT

l �x � w�
w�� �wT

l �x � w�

���

where

w �

�
� �wl

w�
w�

�
A ���

This function is identical to the ramp basis de�ned in ���
and ���� but is parameterized di�erently� An example of the
surface formed by an HS node on a two�dimensional input
is shown in Figure �� It is comprised of three hyperplanes
joined pairwise continuously at two hinge locations� The
upper and middle hyperplanes are joined at �Hinge 	� and
the lower and middle hyperplanes are joined at �Hinge ���
These hinges induce linear partitions on the input space
that divide the space into three regions� and the samples
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Fig� �� A Sigmoid Hinge function in two dimensions�

in S into three subsets�

S� �
	
�xi� yi� � �w

T
l �xi � w�



Sl �

	
�xi� yi� � w� � �wT

l �xi � w�



S� �
	
�xi� yi� � �w

T
l �xi � w�


 ���

These subsets� and the corresponding regions of the input
space� are referred to as the PLUS� LINEAR and MINUS
subsets�regions respectively� We refer to this type of par�
tition as a sigmoidal partition� A sigmoidal partition of S
will be denoted P � fS�� Sl� S�g� and the set of all such
partitions will be denoted � � fPig�
Input samples which fall on the boundary between two

regions can be assigned to the set on either side� These
points are referred to as hinge samples and play a crucial
role in subsequent development�
Note that once a weight vector w in ��� is speci�ed� the

partition P is completely determined� but the reverse is
not necessarily true� That is� there are generally an in�nite
number of weight vectors that induce the same partition�
We begin our quest for a learning algorithm with the

development of an expression for the empirical risk� The
empirical risk �squared error over the sample set� is de�ned

EP �w� �
	

�

X
S

�yi � �h�xi�w��
�

�	��

This expression can be expanded into three terms� one for
each set in the partition�

EP �w� �
	

�

X
S
�

�yi�w��
��
	

�

X
S�

�yi�w��
��
	

�

X
Sl

�yi� �w
T
l �xi�

�

After further expansion and rearrangement of terms we
obtain

EP �w� �
�
�

�
N�w

�
� �N�w

�
� � �w

T
l Rl �wl

�
�w�s

�
y � w�s

�
y � �wT

l rl � s�y

where
Rl �

P
Sl
�xi�xTi rl �

P
Sl
�xiyi �		�
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s�y �
�
�

P
S y

�
i s�y �

P
S�

yi s�y �
P

S
�

yi �	��

and N�� Nl and N� are the number of samples in S�� Sl
and S� respectively� This expression can be simpli�ed to

EP �w� �
	

�
w
T
Rw�w

T
r� s�y �	��

where

R �

�
� Rl � �

� N� �
� � N�

�
A r �

�
� rl

s�y
s�y

�
A w �

�
� �wl

w�
w�

�
A

�	�
The subscript P is used to emphasize that this criterion is
dependent on the partition �i�e� P is required to form R

and r�� In fact� the nature of the partition plays a critical
role in determining the properties of the solution� More
speci�cally it determines the rank of R� Note that R is a
symmetric matrix and in general is positive semide�nite�
When R is positive de�nite �i�e� full rank�� P is referred
to as a stable partition� and when R has reduced rank P is
referred to as an unstable partition� A stable partition re�
quires that there be at least one sample in S� and S�� and
that the samples in Sl form a positive de�nite correlation
matrix Rl� The conditions on S� and S� are quite reason�
able� given that an empty set in either case would mean
that the corresponding region of the sigmoid could take on
an arbitrary value without a�ecting the empirical error� A
necessary �but not su�cient� condition for Rl � � is that
there be at least d � 	 samples in Sl�

� For purposes of
algorithm development we require that jSlj � Nmin� where
Nmin is a suitably chosen value greater than or equal to
d�	� With the proper choice of Nmin we can often insure
that Rl is not only positive de�nite� but also well�behaved�
Alternatively� we could consider adding a regularization

term to EP �w� of the form �kwk� �e�g� weight decay�� The
corresponding empirical risk would have the same form as
�	�� with R replaced by R� � R � �I� Note that choos�
ing � � � guarantees R� � �� In this case all partitions
are stable and there is no need to monitor the number of
samples in S�� Sl and S�� On the other hand� adding the
regularization term leads to a biased solution� The bias can
be minimized however� by making � su�ciently small� �

In summary� when seeking a minimizing solution for
EP �w� we restrict ourselves to stable partitions because
of the potential nonuniqueness associated with solutions
to unstable partitions� If we use a regularization term �i�e�
� � ��� then stable partitions are guaranteed� On the other
hand� in practice we can often circumvent the need for reg�
ularization by simply requiring that jS�j � 	� jS�j � 	 and
jSlj � Nmin�
Note that EP �w� is quadratic in w� and with R� � �

a unique global minimum is guaranteed� Thus� it would

�In truth� the positive de�nite condition on Rl is not critical to our
implementation� and can be removed if we are willing to employ tech�
niques for manipulating reduced rank matrices� In fact we are often
forced to employ such techniques in practice to handle ill�conditioned
matrices that arise�
�Alternatively� in practice it is customary to choose � to optimize

the bias�variance trade�o��

seem that the value of w that minimizes EP �w� could be
readily obtained by solving the system of linear equations
R�w � r� However� the solution to R�w � r does not
necessarily minimize EP �w� because the resulting w may
induce a di�erent partition on S which changes the expres�
sion for EP �w�� Determining a weight vector that simulta�
neously minimizes EP �w� and preserves the current parti�
tion can be posed as a constrained optimization problem�
This problem takes on the form

min �
�
w
T
R�w �w

T
r

subject to Aw � �
�	��

where the inequality constraints are designed to maintain
the current partition� Using the partition equations in ���
we obtain the following form for A�

A �

�
BB�

A�

Al�

Al�

A�

�
CCA �	��

where the rows of A��Al��Al� and A� are

a
T
� � � ��xTi 	 � � � �xi � S�
a
T
l� � � �xTi �	 � � � �xi � Sl
a
T
l� � � ��xTi � 	 � � �xi � Sl
a
T
� � � �xTi � �	 � � �xi � S�

�	��

Note that there are two constraints associated with each
sample in Sl so that A has a total of N� � �Nl � N�

rows� The optimization problem in �	�� is a Quadratic

Programming problem with inequality constraints� and be�
causeR� � � it has a unique global minimum� The general
Quadratic Programming problem is NP�hard ��	
 and also
hard to approximate ���
� However� the convex case which
we restrict ourselves to here �i�e� R� � �� admits a polyno�
mial time solution ���
� In this paper we use the active set

algorithm described in �	�
 to solve �	��� This algorithm is
similar to the Simplex algorithm for Linear Programming
in that it is simple� robust� and guaranteed to converge in a
�nite number of steps� It also tends to run very e�ciently
in practice� With the proper implementation� this algo�
rithm runs in O�k�d� �Nd�� time� where k is the number
of times through the main loop� Although k can grow quite
large in theory� in practice it is typically on the order of d
or less�
The solution to the quadratic programming problem in

�	�� is only as good as the current partition allows� The
more challenging aspect of minimizing EP �w� is in the
search for a good partition� Unfortunately there is no sim�
ple arrangement of partitions that corresponds to a partial
ordering in EP �w�� so the search for the optimal parti�
tion will be a computationally challenging problem� An
exhaustive search is usually out of the question because of
the prohibitively large number of partitions� as given by
the following lemma�

Lemma �� Let S contain a total of N samples in �d that
lie in general position �i�e� no d � 	 of the samples lie
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on a d � 	 dimensional hyperplane�� Then the number of
sigmoidal partitions de�ned in ��� is  �Nd����

Proof� Let L�N� d� represent the number of lin�
ear dichotomies of N points in d dimensions� When the
N points are in general position it is well�known that
L�N� d� �  �Nd� ��
� Each sigmoidal partition is com�
prised of two linear dichotomies� one formed by Hinge 	
and the other by Hinge �� and these dichotomies are con�
strained to be simple translations of one another� That
is� the separating hyperplanes that induce these two di�
chotomies are constrained to be parallel� Consequently�
when one is given� the other can take on at most N � 	
distinct values� These come from the N � 	 dichotomies
induced as a hyperplane with �xed orientation is swept
from one end of the input data to the other �a new parti�
tion is induced each time it crosses a data sample�� Thus�
there are at most O�Nd��� sigmoidal partitions� Now we
show that there are at least this many� Consider an arbi�
trary dichotomy formed by Hinge 	� It splits S into two
sets of size N� and N�� Suppose the �rst set is S� and
the second is Sl � S�� Because the LINEAR region must
fall between the PLUS and MINUS regions� the �legal�
dichotomies for Hinge � can only be obtained by sweeping
through the samples in the second set� This givesN��	 di�
chotomies �including those leading to unstable partitions��
Similarly� if the second set is labeled S� and the �rst is
Sl � S� then there will be N� � 	 possible dichotomies for
Hinge �� These two cases have one dichotomy in common�
so in total� for each pair of dichotomies induced by Hinge
	 there will be N� �N� � 	 � N � 	 di�erent dichotomies
for Hinge �� Thus� there are �N �	�L�N� d��� � !�Nd���
total sigmoidal partitions�

Even though the number of sigmoidal partitions is poly�
nomial inN � exhaustive search is clearly out of the question
for even modest values of N and d� Lacking a global search
strategy which is provably more e�cient we are forced to
consider heuristic methods for searching �� Two such algo�
rithms are described below� The �rst was introduced else�
where and is called the Ramps algorithm� Ramps searches
through partitions using a strategy analogous that used by
the K�Means clustering algorithm� The second is a new
method introduced here which searches through partitions
by allowing a small number of carefully chosen points to
migrate from one set to another at each step� These points
are chosen so that the �t can be improved on each succes�
sive partition�

The Ramps algorithm presented here is due to Friedman
and Breiman ���
� The advantage of this algorithm lies
in its simplicity� It searches through partitions by repeat�
edly solving Rw � r until it converges to a point where
w induces the same partition on two consecutive iterations
�note that � � � for this algorithm�� The complete algo�
rithm� as presented in ���
� is shown in Figure � where the
ramp basis notation in ��� and ��� has been used� This al�
gorithm has the advantage that� when it converges� conver�
gence is usually very fast� Unfortunately it does not always
converge� Note that there is no mechanism to prevent the
algorithm from diverging to an unstable partition� and al�

fInvoke routine with feasible solution W  fwd� �� �� a�� a�g�g

procedure Ramps �W �
repeat

Compute z and Partition data into S�� Sl and S��
zi  wT

d
xi� i  �� �� ����N �

S�  f�xi� yi� � zi � �g
Sl  f�xi� yi� � � � zi � �g
S�  f�xi� yi� � � � zig

Compute R� r� �� and ���
R  �

P
Sl

�xi�x
T
i
��Nl

r  �
P

Sl
�xiyi��Nl

��  �
P

S
�

yi��N�

��  �
P

S�
yi��N�

Update �wT  �w� wT
d
��

�w  R��r
Update � and ��

�  ��� � w���kwdk
�  ��� � w���kwdk

Normalize wd�
wd  wd�kwdk

until �wd���� converge� �

Compute the bias and scale parameters�
a�  ��
a�  �� � ��

return�W ��
end � fRampsg

Fig� �� The Ramps Algorithm�

though there are relatively few such partitions� divergence
to one of them is commonly observed in practice� This
behavior can be illustrated with a simple one�dimensional
example� Consider the �ve sample problem in Figure ��
There are three stable partitions for this problem�

P� � ff�	� 	�g� f��� �� ��� ���� �� ��g� f��� ��gg

P� � ff�	� 	�� ��� �g� f��� ���� �� ��g� f��� ��gg

P
 � ff�	� 	�g� f��� �� ��� ���g� f�� ��� ��� ��gg

Starting from any one of these three partitions� the Ramps
algorithm will diverge to an unstable partition �with zero
points in S� and S�� after just one step� In practice the
simplest way to compensate for this behavior is to restart
the algorithm from a di�erent initial partition� and repeat
this process if necessary until convergence to a stable par�
tition is obtained� The Ramps algorithm can also be shown
to exhibit limit cycles �with even periods�� In practice we
can compensate for this behavior by placing an upper limit
on the total number of iterations�
The partitions produced by Ramps can vary dramatically

from one iteration to the next �i�e� a large number of sam�
ples can move between subsets�� The algorithm considered
next is a more conservative� in that only a few carefully cho�
sen samples are allowed to move between subsets� This ap�
proach employs a Quadratic Programming �QP� algorithm
at each new partition to determine the optimal weight vec�
tor for that partition �i�e� the optimal orientation for the
separating hyperplanes�� Transitions are made from one
partition to the next by allowing hinge samples to "ip from



IEEE TRANSACTIONS ON NEURAL NETWORKS� VOL� XX� NO� Y� MONTH ���� �

0

2

4

6

8

10

0 1 2 3 4 5 6

y

x

Fig� �� Example problem for the Ramps algorithm�

one side of the hinge boundary to the next� The search is
terminated when a minimum value of EP �w� is found �i�e�
it can no longer be reduced by "ipping hinge samples�� The
motivation for this algorithm originates from the following
observations regarding the types of solutions produced by
the QP algorithm� The QP solution for an individual par�
tition can take on two di�erent forms�

	� In the �rst form the solution has no active constraints�
that is none of the rows of A satisfy aTi w � �� This means
that there are no hinge samples associated with this solu�
tion� Consequently this solution is a local minimum over
�� This is easily veri�ed� since a small perturbation of w
towards any another partition will increase EP �w��
�� In the second form the QP solution has one or more ac�
tive constraints� i�e� one or more hinge samples� In this
case it may be possible to reduce EP �w� further by per�
turbing w in a direction that violates one of the active con�
straints� To make such a perturbation legal we can simply
"ip the sign of the constraint �multiply by �	�� Note that
it is always possible to "ip the sign of an active constraint
and maintain feasibility of the current solution �if aTw � �
then �aTw � ��� Flipping the sign of a constraint is equiv�
alent to moving a hinge sample across the hinge boundary
from one set to another �e�g� from Sl to S��� This results
in a new partition of the data� Computationally this in�
volves a relabeling of the data sample� "ipping the sign of
the constraint� and updating R� and r� After the "ip� a
new QP solution is sought� If this new solution is di�er�
ent from the previous solution then it will have a reduced
value of EP �w�� On the other hand� if it is the same as the
previous solution then it represents a local minimum over
�� We know this to be true because it is the minimum for
two adjacent partitions which implies that a perturbation
in any direction will increase EP �w��

It is relatively straightforward to synthesize an algorithm
for descending EP �w� that capitalizes on these properties
of the QP solution� For example� the algorithm in Figure
� moves from one partition to the next �and from one QP
solution to the next� by successively "ipping hinge sam�
ples across the hinge boundaries as described above un�
til it reaches a local minimum over �� We call this the
HingeDescent algorithm because it allows the hinges to

fInvoke with feasible solution W  fw�R�� r� A� S�� Sl� S�g�g

procedure HingeDescent �W �
fWalk hinges across data until a min partition is found�g

E  �

�
wTR�w�wT r

do
Emin  E

fFlip Hinge � Samples�g
for each ��xi� yi� on Hinge �� do

if ��xi� yi� � S� and N� � �� then
Move �xi� yi� from S� to Sl
Update R�� r� and A

elseif ��xi� yi� � Sl and Nl � Nmin� then
Move �xi� yi� from Sl to S�
Update R�� r� and A

endif
endloop

fFlip Hinge � Samples�g
for each ��xi� yi� on Hinge �� do

if ��xi� yi� � S� and N� � �� then
Move �xi� yi� from S� to Sl
Update R�� r� and A

elseif ��xi� yi� � Sl and Nl � Nmin� then
Move �xi� yi� from Sl to S�
Update R�� r� and A

endif
endloop

fCompute optimal solution for new partition�g
W  QPSolve�W ��

E  �

�
wTR�w�wT r

while �E � Emin� �

return�W ��
end � fHingeDescentg

Fig� 
� The HingeDescent Algorithm� When � � 	 the tests for
N� � �� N� � � and Nl � Nmin can be omitted�

�walk across� the data in a manner that descends the
EP �w� criterion� Note that provisions are made within the
algorithm to avoid unstable partitions in the event that
� � �� Note also that it is easy to modify this algorithm
to descend only one hinge at a time� simply by omitting
one of the blocks of code that "ips samples across the cor�
responding hinge boundary�

Lemma �� With � � � the HingeDescent algorithm will
converge to a stable partition of EP �w� in a �nite number
of steps�

Proof� First note that � � � guarantees R� � ��
so that a QP solution for any partition can be found in a
�nite number of steps� For example� it is relatively easy to
show that the active set algorithm satis�es this condition�
The proof of this result is beyond the scope of this paper�
but can easily be found in the literature �	�
� �	�
� Now�
by design� HingeDescent always moves from one partition
to the next� reducing EP �w� at each step �except the last
one� so that no partitions are revisited� Since there are a
�nite number of partitions �see Lemma 	� this algorithm
must terminate in a �nite number of steps� QED�

Assume that QPSolve runs in O�k�d��Nd�� time as pre�
viously stated� Then the run time of HingeDescent is given
by O�Np��k �Nh�d

� � kNd��� where Nh is the number of
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samples "ipped at each step and Np is the total number of
partitions explored� Typical values for k and Nh are on the
order of d� simplifying this expression to O�Np�d


�Nd����
Np can vary widely� but is often substantially less than N �
In contrast the Ramps algorithm� if properly implemented�
runs in O�NpNhd

��� where Nh is the number of samples
that move between sets on each iteration and Np is the to�
tal number of partitions explored� For Ramps� Nh is often
much larger than d� so its run time is roughly comparable
to that of HingeDescent�
In contrast however� HingeDescent is capable of pro�

viding solutions which are not possible with Ramps� For
example� consider the problem illustrated earlier in Fig�
ure �� Ramps is not able to provide a stable solution for
this problem� but HingeDescent �nds the optimal solution
�shown in Figure �� from any valid starting point�
Both Ramps and HingeDescent seek a local minimum

over �� and both can produce poor solutions depending on
their starting partition� One way to remedy this is to start
them from several di�erent initial partitions� and then re�
tain the best solution overall� We take a di�erent approach
in the next section where we present an algorithm that al�
ways starts with the same initial condition� visits several
local minima along the way� and always ends up with the
same �nal solution each time� The SweepingHinge algo�
rithm as it is called� builds on the approach adopted in the
HingeDescent algorithm�

IV� The Sweeping Hinge Algorithm

The SweepingHinge algorithm works as follows� It starts
by performing a linear �t to the data� This �t is used for
the initial linear region of the sigmoid� The initial hinges
are then placed at the two extreme samples on opposite
ends of the linear �t� This puts one sample in the PLUS
region and one in the MINUS region� leavingN�� samples
in the LINEAR region� The details of InitialLinearFit�
including the initialization of all relevant algorithm param�
eters� are shown in Figure �� Note that this initialization
is analogous to the use of small weights in the initialization
of the backpropagation algorithm� since small weights tend
to place data in the linear region of the sigmoid�
After the initial linear �t� the hinges are allowed to de�

fReturns initial feasible solution W  fw�R� r� A� S�� Sl� S�g�g

procedure InitialLinearFit �S�
fCompute Least Squares Fit to data�g

Rl 
PN

i��
�xi�xTi

rl 
PN

i��
�xiyi

�wl  R��
l
rl

fFind the two samples at the extremes�g
for each �xi � S� do

zi  �wT
l
�xi

endloop
j  argminifzig
k  argmaxifzig

fPosition Hinge � on the max sample and put in S�� g
S�  f�xk� yk�g
N�  �
A  f� ��xT

k
� 	 �g

w�  zk
Rl  Rl � �xk�x

T
k

rl  rl � �xkyk
s�y  yk

fPosition Hinge � on the min sample and put in S�� g
S�  f�xj � yj�g
N�  �

A  A � f� �xTj 	 �� �g
w�  zj
Rl  Rl � �xj �x

T
j

rl  rl � �xjyj
s�y  yj

return�W ��
end � fInitialLinearFitg

Fig� �� The InitialLinearFit Algorithm�

scend to a local minimum using HingeDescent� This cor�
responds loosely to the solution that would be produced
by backpropagation� The SweepingHinge algorithm con�
tinues to look past this solution for a better one� This is
accomplished by sweeping Hinge 	 across the data one sam�
ple at a time� Mechanically this is achieved by moving one
additional sample from Sl to S� at each step� Hinge � is
allowed to descend to an optimal position at each of these
steps using the Hinge�Descent algorithm� This algorithm
is identical to HingeDescent except that the code that "ips
samples across Hinge 	 is omitted� The best overall solution
from the sweep is retained and ��ne�tuned� with one �nal
pass through the HingeDescent algorithm to produce the
�nal solution� The complete algorithm is shown in Figure
��

All of the partitions explored by the SweepingHinge al�
gorithm are determined in a data driven fashion� At the
same time� the mandatory sweep of Hinge 	 forces this al�
gorithm to explore a rich set of partitions� In fact� this
algorithm tends to pass through basins of attraction for
several local minima during the sweep� In addition� the
forced sweep guarantees that the algorithm will terminate
in �nite time� If the number of data samples is large� the
sweep time can be reduced by moving M samples into S�
at each step �instead of 	�� In fact� when N is large com�
pared to d� there is often little di�erence between solutions
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fThis routine returns a solution W �  fw�R� r� A� S�� Sl� S�g�g

procedure SweepingHinge �S�
fFind an Initialize Feasible Solution and
then search for a minimizing partition�g
W  InitialLinearFit�S��
W  HingeDescent�W ��

fSave current solution and compute its criterion�g
W � W
E�  �

�
wTRw �wT r

fSweep Hinge � Across the Data�g
while �N� � N �Nmin � �� do

fFind the sample in Sl closest to
Hinge � and move it to S��g
for each ��xi� yi� � Sl� do

zi  �wT
l
�xi

endloop
j  argminifzig
Move �xj � yj� from Sl to S�� and update R�r�A�
w�  zj

fMaintain a stable partition by moving
a sample from S� to Sl if needed�g
if �Nl � Nmin� then

for each ��xi� yi� � S�� do
zi  �wT

l
�xi

endloop
j  argmaxifzig
Move �xj � yj� from S� to Sl� and update R�r�A�
w�  zj

endif

fOptimize Hinge � location�g
W  Hinge�Descent�W ��

fKeep track of the best solution so far�g

E  �

�
wTRw �wT r

if �E � E�� then
E�  E
W � W

endif
endloop

fFine�tune best solution from the sweep�g
W �  HingeDescent�W ���
return�W ���

end � fSweepingHingeg

Fig� �� The SweepingHinge Algorithm�

for neighboring partitions and it is possible to sweep across
several samples at each step without adversely a�ecting the
�nal solution� Note that this algorithm always starts at the
same position �determined by the data�� and as long as M
is �xed this algorithm always produces the same answer�
While there is no guarantee that it will locate the global
minimum over �� there is good reason to believe that it will
provide solutions of high quality� This claim is supported
in part by the empirical results presented in section V�

The run time of SweepingHinge is no worse thanN times
that of HingeDescent �it is usually much less�� Given this�
the run time for this algorithm is O�NNp�d


�Nd���� Con�
sequently� SweepingHinge scales reasonably well in both N
and d� considering the nature of the problem it is designed
to solve�

V� Empirical Results

Three sets of empirical results are presented in this sec�
tion� The �rst involves a two�dimensional function whose
approximations can be displayed visually and compared
with results in ��
� ��
� ��
� The second is an experiment
designed to test the e�ect of dimensionality on the mod�
els produced by the IIA�SweepingHinge algorithm� This
experiment can be viewed as an empirical test of Barron�s
theoretical bound on approximation error� The third ex�
periment involves a comparison with several other nonpara�
metric modeling methods from ���
�
All of the results presented in this section used the IIA al�

gorithm to build a one�hidden layer network model� When
SweepingHinge was employed at Step � of the algorithm�
� was set to zero and Nmin was set equal to �d� where d is
the input dimension� This proved to be su�cient to main�
tain both stable and well�behaved partitions� For compar�
ison� HingeDescent and Ramps were also employed at Step
�� HingeDescent was performed from 	� random initial
hinge locations in each case� and the best result incorpo�
rated into the model� Because of the convergence problems
of Ramps� it was restarted from random hinge locations as
often as necessary to produce 	� stable solutions in each
case� and the best result incorporated into the model� Fi�
nally� a re�tting pass �Figure �� was employed after each
new node was added in the IIA� The re�tting algorithm
used HingeDescent �or Ramps� to �re��t� the residual at
Step ��
Results of the SweepingHinge algorithm applied to the

two�dimensional function in Figure 	� are shown in Figures
		�	�� A total of ��� randomly chosen samples from this
function were used for training� and the �ts were produced
with � � and 	� nodes� These results are comparable to
those obtained using other methods on this same �or sim�
ilar� problem�s� �e�g� see the results in ��
� ��
� ��
�� It
is also instructive to examine the e�ects of noise� Figures
	�	� show results analogous to those in Figures 	��	��
except that uniform noise with a variance of ��n � �����
has been added to the target function 
� These results il�
lustrate a remarkable ability of these models to extract the
underlying deterministic function in the presence of noise�
To provide a quantitative comparison� HingeDescent

and Ramps were also applied to this function� An inde�
pendent test set of 	��� samples was used to measure the
generalization performance� Results for ��n � �� �����
and ��	 are provided in Tables I� II and III� The re�
sults for HingeDescent and Ramps are averaged over 	�
trials and the standard deviation is shown in parentheses�
�SweepingHinge always provides the same result by de�
sign��
Note �rst that the performances of SweepingHinge and

HingeDescent are consistently better than those of Ramps�
One might expect HingeDescent and Ramps to produce
similar results� since both descend to a local minimum from
random starting points� The di�erence however is that
HingeDescent is guaranteed to converge from any �stable�

�Note that the total energy in the noise�free target function is 	���
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starting position� while Ramps is not� In fact� the Ramps al�
gorithm diverges from a majority of its starting positions�
This is illustrated in Tables IV� V and VI which show the
number of initial positions required to reach 	� stable so�
lutions� The ratio of total starting positions to successful

starting positions varies roughly from ��	 to 	��	� The re�
sults are generally worse as the number of nodes increases�
suggesting that the percentage of partitions leading to a
stable solution decreases as the dominant structure in the
function is removed from the residual� The results are also
slightly better as the noise level is increased� which may
be due to the increase in spurious local minima �additional
attractors� that can sometimes accompany high noise sit�
uations� The fact that there is such a high percentage of
unsuccessful starting positions not only slows the Ramps al�
gorithm �because of the large number of restarts required��
but degrades performance by making it harder to discover
the best minima�

The results for SweepingHinge and HingeDescent are
more comparable� On average� HingeDescent provides
better performance in the no noise case� and in the be�
ginning when very few nodes are present� But as the num�
ber of nodes is increased the performance of the two are
roughly equivalent� This is especially true when noise is

Number MSE for Avg �Std� Avg �Std�
Data of Sweeping MSE for MSE for
Set Nodes Hinge Hinge Descent RAMPS

 ���� ����� �������� ����� �����	�
Train � ����� ����	� ��������� ���		 ��������

	� ������� ������ ������	�� ����� ��������
 ���� ���	 ����		� ����� ��������

Test � ������ ����� ��������� ���	� ����		�
	� ����	� ����	� ��������� �����	 ��������

TABLE I

Mean�Squared Error �MSE� comparisons with 	�n  	�

Number MSE for Avg �Std� Avg �Std�
Data of Sweeping MSE for MSE for
Set Nodes Hinge Hinge Descent RAMPS

 ����� ���� �������� ����� ����	��
Train � ���� ���� �����	�� ���	 ����		�

	� ����� ����	 �������	� ����	 �������
 ����� ����	 �������� ����� ��������

Test � ����� ����� ������� ����� ��������
	� ����� ����� �������� ���� ��������

TABLE II

Mean�Squared Error �MSE� comparisons with 	�n  	�	���

present� The advantage of SweepingHinge is that it is run
only once� Its solution is not a function of the initial posi�
tion as it is with HingeDescent� Because of the sweeping
operation� SweepingHinge will always take longer than a
single run of HingeDescent� But when HingeDescent is
started from several initial positions the run times of the
two algorithms are more comparable�

The second experiment in this section is designed to test
the e�ect of dimensionality on the models produced by
IIA�SweepingHinge� In section II we saw that under ap�
propriate conditions the approximation error for sigmoidal
basis function models is bounded by cf�n� where cf de�
pends on f � It is trivial to show that this bound also ap�
plies to the empirical squared error� That is� when fn�N is

Number MSE for Avg �Std� Avg �Std�
Data of Sweeping MSE for MSE for
Set Nodes Hinge Hinge Descent RAMPS

 ��	�� ��	�� �������� ��	�� ����	�
Train � ����� ����� �������� ��		� ����	��

	� ����� ����	 ������� ��	� ����		�
 ��	�� ��	�	 �������� ��	�� ����	��

Test � ��	�� ��	�	 �������� ��	 ����	��
	� ��	�� ��	�� �������� ��	� ����	��

TABLE III

Mean�Squared Error �MSE� comparisons with 	�n  	���
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Number Average Standard
of Nodes Number of Retries Deviation

 �� ����
� 	�� ����
	� 	�� 	����

TABLE IV

Retries needed to find �� stable solutions with RAMPS

�	�n  	��

Number Average Standard
of Nodes Number of Retries Deviation

 ��� ����
� 		�� ���
	� 	���� ����

TABLE V

Retries needed to find �� stable solutions with RAMPS

�	�n  	�	����

Number Average Standard
of Nodes Number of Retries Deviation

 �	�� ���
� ���� ���
	� 	���� �	�

TABLE VI

Retries needed to find �� stable solutions with RAMPS

�	�n  	����

chosen to minimize the empirical squared error it can be
shown that ���


#e� �
	

N

NX
i��

�f�xi�� fn�N�xi��
�
	

cf
n

�	��

Although we cannot guarantee a global minimum with the
IIA�SweepingHinge algorithm� we will demonstrate that
it is capable of producing results that satisfy �	���
The bound in �	�� applies only to the error over the

training data� The error over future data� i�e� the general�
ization error� includes both approximation error and esti�

mation error �i�e� the error due to �nite sample training��
The estimation error generally prevents us from achieving
�	�� over an independent set of test data� This is demon�
strated in the experiment below� Most importantly how�
ever� we demonstrate that both training and test errors
are independent of dimension� giving empirical support for
the claim that IIA�SweepingHinge algorithm can produce
models that circumvent the curse of dimensionality�
The following experiment was adapted from ��
� The

function f�x� � e�kxk
�

is sampled at 	��d points fxig such
that kxk � � and kxk is uniform on ��� �
� The dimension
d is varied from  to 	� �in steps of �� and models of size
	 to �� nodes are trained using the IIA�SweepingHinge
algorithm� The number of samples traversed at each step
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of the sweep in SweepingHinge was set to M � 	�� The
average sum of squared error� #e�� was computed for both
the training data and an independent set of test data of
size ���d� Plots of 	� #e� versus the number of nodes are
shown in Figures 	� and 	� for the training and test data
respectively� The curves in Figure 	� are clearly bounded
below by a linear function of n �as suggested by inverting
�	���� More importantly however� they show no signi�cant
dependence on the dimension d� The curves for the test
data in Figure 	� �shown on the same scale� make it clear
that the generalization error is larger than the training er�
ror �as expected�� The asymptotic e�ect of the estimation
error is noticeable in these curves as they start to �bend
over� around n � 	� nodes� Again however� they show no
real dependence on the dimension d�

The �nal experiment in this section compares the meth�
ods developed here with the results in ���
� which exam�
ines several di�erent nonparametric models on a variety
of regression problems� The models in ���
 include k�
nearest neighbor �KNN�� generalized memory�based learn�
ing �GMBL�� projection pursuit regression �PPR�� arti��
cial neural networks �ANN�� multivariate adaptive regres�
sion splines �MARS�� and constrained topological mapping
�CTM�� The ANN model in ���
 is a one�hidden layer net�
work that is similar to the model in this paper except that it
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uses the smooth sigmoid activation function and is trained
using a combination of conjugate gradient descent and sim�
ulated annealing� Several regression problems� which vary
from two to six dimensions� are used in ���
� The compar�
ison here is with the �high dimensional� �six dimensional�
function given by

y � 	� sin�
x�x�� � ���x
 � ����
� � 	�x� � �x � �x�

This function is sampled uniformly on ��	� 	
�� Sets of size
��� 	�� and �� are used for training� and a test set of size
��	 is used to measure generalization performance� The
generalization measure is taken to be the normalized root
mean square �NRMS� error� i�e� the standard deviation
of the test set error divided by the standard deviation of
the test set itself� Training sets are synthesized with three
di�erent signal�to�noise ratios �SNRs�� �� � and �� The
noise is Gaussian with zero mean�
Both SweepingHinge and Backpropagation are used to

produce models for this function� Backpropagation is
trained for 	��� epochs with a learning rate of ����	 �higher
values lead to instabilities and�or excessive oscillations near
the solution�� In all cases the number of nodes is optimized
to provide the best generalization performance�
The results are summarized in Table VII� Both

SweepingHinge and Backpropagation provide inferior
generalization performance in the small sample case� This
is consistent with the ANN results in ���
� Also� in the
noise�free case PPR is the most consistent at providing
the best generalization ���
� and is consistently better than
both SweepingHinge and Backpropagation here� How�
ever� SweepingHingeperforms very well in the medium and
large sample cases when noise was present� and in fact gen�
eralizes better than all other methods in three of the four
cases� Backpropagation does not produce superior results
for any of the six trails� but outperforms SweepingHinge
in the ���sample noise�free case� Finally note that
SweepingHinge tends to produce smaller models than
Backpropagation� These results suggest that piecewise�
linear sigmoidal networks trained with IIA�SweepingHinge
are very competitive with other methods�

VI� Summary

This paper has introduced a constructive algorithm for
nonlinear function approximation that builds a 	�hidden
layer neural network with piecewise linear sigmoidal nodes�
Important properties of the algorithm include computa�
tional e�ciency� guaranteed convergence in a �nite num�
ber of steps� ease of use� solutions which are independent
of initial conditions� a simple stopping criterion� good scal�
ing properties and good �ts on high dimensional data�
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Generalization results for the ��dimensional problem�
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